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ABSTRACT 

Quasi Z-source inverter is improvement to traditional Z-source inverter. Current-fed quasi Z-source inverter 

(CF-QZSI) is an enhancement to Z-source inverter (ZSIs), it owns lower component rating, decreased source 

stress, decreased component compute and prosaic control synthesis. With its distinct structure, the CF-QZSI can 

operate the traditional zero states to buck the output voltage, which improves the inverter dependability greatly, 

and provides a tantalizing single stage dc-ac conversion that is able to buck and boost the voltage. For dedications 

with a variable input voltage, this inverter is a very competitive topology. The paper presents a comprehensive 

study on the new features of CF-QZSI which include the advantageous buck-boost function, improved reliability 

and reduced passive component rating, its characteristics is verified by the simulation results . 

Keywords- Current-source inverter, Voltage source inverter, Current-fed quasi Z-source inverter, buck-boost. 

 

I. INTRODUCTION 
The voltage source inverter and current 

source inverter provide an attractive single-stage dc-ac 

conversion that is able to buck or boost voltage, 

increase efficiency and reduce cost. However, 

traditional inverters have drawbacks, i.e. behave in a 

boost or buck operation only, and thus the obtainable 

output voltage range is limited, either lower or higher 

than the input voltage. The main switching device of 

VSI and CSI are not interchangeable, and the 

capacitor passes through high voltage. Z-source 

inverter can overcome the inherent drawbacks of the 

traditional inverters. The quasi Z-source inverter 

(qZSI) is the improvement to traditional Z-source 

inverter, voltage-fed qZSI have more attention than 

the current-fed qZSI. The main drawback of 

current-fed Z-source inverter is that the inductor 

passes through high current.  

The traditional current-fed quasi Z-source 

inverter uses dc current source as the input. The dc 

current source can be created by using uncontrollable 

diode rectifier, battery and fuel-cell series an inductor. 

Six switches are used in the traditional three-phase 

inverter. Semiconductor devices are used as the 

switches.SCR or power transistor with a series diode 

can be used to provide unidirectional current flow and 

bidirectional blocking. Newly developed switches the 

reverse blocking IGBT (RB-IGBT) also promotes the 

research on CSI [9], [10]. 

If we compare to current source inverter (CSI), 

the standard voltage source inverter have 8 switching 

states, including 6 active states and two zero states. 

When the upper three or lower three switches are gated 

on, shorting the load terminals. Current source inverter 

have 9 nine valid states, 6 active and three zero state. 

The three zero states produce zero ac line currents. In 

this case, the dc-link current free wheels through either 

the switches pole. The remaining states produce 

non-zero ac output line currents.  

This paper mainly focuses on the new feature of 

current-fed quasi Z-source inverter, especially the 

switching technique.  

 

II. CURRENT-FED QZSI CIRCUIT 

ANALYSIS 
To improve the traditional ZSIs, four new 

quasi-Z-source inverters, have been developed which 

feature several improvements when compared to the 

traditional ZSIs. They are voltage-fed qZSI with 

continuous and discontinuous input current, current-fed  

qZSI with continuous and discontinuous input current. 

The current fed qZSI in a manner consistent with the 

current-fed ZSI, are bidirectional with the diode, D. The 

qZSI shown in Fig. 1, features reduced current in 

inductor L2 and L3, as well as reduced  passive 

component count. Again, due to the input inductor, L1, 

the qZSI in Fig. 1 do not require input capacitance. All 

four qZSI topologies also feature a common dc rail 

between  the source and the inverter bridge, unlike the 

traditional ZSI circuits. Furthermore, these qZSI 

circuits have no disadvantages when compared to the 

traditional ZSI topologies. These qZSI topologies 

therefore can be used in any application in which the 

ZSI would traditionally be used.  
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. Fig 1 current-fed qZSI with continuous input current 
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A. Active state 

In active mode only one upper device and one 

lower device which lies not same phase are conducted 

simultaneously. In the active mode the inverter works 

as traditional CSI. 

The inverter bridge, viewed from the DC side 

is equivalent to a current source, the input dc voltage is 

available as dc-link voltage input to the inverter, which 

makes the current-fed qZSI behave similar to a VSI. In  

active  state based  on  type  of  switch  states  the  

dc-link  voltage  is equal  to  ac  line  voltage. So 

Vpn=Vae. Fig 2(a) shows the active state equivalent 

circuit. 

 

B. Traditional zero state 

    In  traditional zero state,  the dc-link  

voltage  is  zero  (Vpn=0),  the  diode  is OFF and  the  

switches  block  the  ac  output  voltage.  Fig. 2(b) shows 

the short-zero state equivalent circuit.  

 

C. Open zero state 

Fig. 2(c) shows the equivalent circuit of the 

open-zero state,  the inverter bridge is equivalent to an 

open circuit, the diode is ON and charges the capacitors 

(C1, C2). The dc-link voltage is equal to sum of 

Capacitors (V= VCl+VC2). 
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Fig 2(a) Active State, (b) Traditional zero state, (c) 

open zero state 

 

III. SPACE VECTOR PULSE WIDTH 

MODULATION 
IGBT is a gate controlled device; SVPWM 

give path and control to AC Voltage. It technique use 

for 3-phase inverter; ac output is sinusoidal and has 

high adaptability. Any three functions of time that 

gratify use space transformation. 

ua(t)+ub(t)+uc(t)=0                                (1) 

Represented two dimensional space 
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A. Switching technique  

The current-fed QZSI has ten possible 

switching states, of which three are traditional zero 

state and six are active states and one of open zero state. 

In open zero state all the switches of the inverter bridge 

is turned off. Traditional zero state can be incept by 

turning on an upper switch (S1, S3, and S5) and a lower 

switch (S4, S6, and S2) from the same phase leg. Active 

state can be incepting by turning on the switches from 

different phase legs.  
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          Table 1 shows the switching states of qZSI 

 

 

Duty ratio are represented as active state (T1/T=DA), 

short-zero state (T0/T=Dsh) and open zero state 

(T2/T=Dop) [3].The switch states and inductor voltage 

are illustrated as follows  

    DA+ Dsh+ Dop=1              

   (7) 
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Fig.3 shows the SVPWM of quasi z-source inverter.         

Maximum value of modulation index is 2 / 3 , for 

0<M<1 the inverter operates as normal SVPWM, when 

M< 2 / 3  the inverter operates as over modulation. 

The space vector pulse width modulation diagram is the 

hexagon. The output power is given as  

3 3
co s

2 2
o d c o

P M L V                (10) 

Where V0 is the rms value of the output phase 

voltage and Ф is phase angle between the output phase 

voltage and the corresponding current. Thus by 

selecting M value and switch states the buck-boost 

expertise is realized. 

I1

I2

I3

I4

I5

I6

II
III

V

VI

α

β

I9

I8

I7

Iref

θ

30°

IIV

 
Fig 3 six possible current vectors 

 

Assuming that      is in sector 1 as shown in 

Fig.3, the duration’s t1, t2, and t0 can be obtained from 

the following current-time integral: 
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   On the other hand the duration t0 = [Ts – (t1 + t2)]  

   For high switching frequency    can be assumed        

constant during each Ts time. I1, I2   are also 

considered constant during each cell time while I0 =0   
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Fig.4 Tsector time switching Strategies 

 

First sector switching sequence and duration 
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Fig.5 Space vector of Qzsi 

 

IV. SIMULATION RESULTS 
The CF-QZSI can be operated in both boost 

and buck operations depending on inductor value. If 

L1=L2=20mH the current is high, output dc voltage is 

low and voltage buck expertise is realized. Fig.6 shows 

the simulation implementation of current-fed qZSI bust 
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capability. When  the  input  inductance value 

L1=L2=150mH  the  input current  is  low,  output  dc  

voltage  is  high  and  voltage boost  expertise is realized. 

The  voltage  and  current blocks  are  amalgamated  to  

effect power  buck  capability.  

Fig.5 or 6 shows the simulated power 

buck-boost capability. Directly above, the theoretical 

calculations are given as: 

 
o in

V N V                              (11) 

Vin is input dc voltage source of qZSI, V0 is dc output 

voltage measured after the impedance network and N is 

duty ratio of switch states where 
1 2

o p
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
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                           (12)    

If we suppose the ac output voltage is Vac. Modulation 

index is M, and thus we have 

a c
I

0 .8 6 6

d c
I

m                                                  (13) 

The ac voltage and current blocks are multiplexed to get 

power buck-boost aptitude. Impedance network 

parameter are L1=L2=L3=20mh C1=C2=200uF and dc 

input voltage 300V.                 

Boost operation results 

 

 
Fig.6 Simulated boost capability of current-fed qZSI 

 

Buck operation results 

 
Fig.7 Simulation buck capability of current-fed qZSI 

 

V. CONCLUSION 
This paper deals with simple technique to 

achieve power buck-boost capability. The advantages 

of this technique are simple, efficient, and reduce 

complexity. The  current-fed  integrated  qZSI  is  

specially  suited for  hybrid  vehicles  and  variable  

speed  motor  drives. Unique  features  like  single  stage  

power  conversion, improved  reliability,  low  EMI  are  

obtained.  The current-fed qZSI concept can be easily 

applied to adjustable-speed drive system. The 

buck-boost operation is attained in simple procedure. 

Better results are obtained through qZSI with 

120-degree and space vector technique. The effects due 

misfiring are overcome. Gating pulses for IGBTs are 

contributing in merited procedure through SVPWM. 

Two on-line PWM gating pattern generators for 

three-phase current source converters have been 

proposed. These are techniques best suited for analog 

control schemes, which uses carrier signal and one best 

suited for digital control schemes based on space 

vector. 
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